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Abstract 
The binary additive stream ciphers are one of the cryptographic systems that are 

often used in aerospace and communication applications where high speed and low delay 
are requirements. 

The need for software-oriented stream ciphers has lead to several alternative 
proposals in the last few years. A new Pseudo Random Number Generator (PRNG) named 
Shrinking-Multiplexing Generator (SMG) is described in this paper. It uses p-1 parallel 
working Linear Feedback Shift Registers (LFSRs) with large period and one p-adic Feedback 
with Carry Shift Registers (FCSR), which control nonlinearity in the generator. 

To be suitable for use in cryptographic systems, PRNG must have large period, 
large linear complexity and good statistical properties. The results from statistical analysis 
of SMG are given in the paper. The sequence generated by SMG is uniform, scalable, 
uncompressible, with large period; consistent and unpredictable are shown by analysis of 
proposed PRNG. This gives us reason to say that the SMG is suitable for particular 
cryptographic application. 

I. Introduction 
The binary additive stream ciphers are one of the cryptographic systems 

that are often used in applications where high speed and low delay are 
requirements like modern aerospace and communication information systems. 
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In the binary additive stream cheaper, the keystream, the plaintext, and the 
ciphertext are sequences of binary digits. The keystream is generated by a 
keystream generator, which takes a secret key as a seed, and produces a long 
pseudorandom sequence. The ciphertext is generated by bitwise modulo 2 
additions of the keystream and the plaintext. 

The goal of stream cipher design is to efficiently produce pseudorandom 
sequences that in all senses are "indistinguishable" from truly random 
sequences. To do this, the pseudorandom sequence must have various 
properties, such as high linear span, high pair-wise Hamming distance, low 
cross-correlation value, large linear complexity and good statistical properties. 

The need for software-oriented stream ciphers has lead to several 
alternative proposals in the last few years. To satisfy this need we propose a 
new Pseudo Random Number Generator (PRNG) and give its statistical 
analysis. 

The paper is organized as follows. A new Shrinking-Multiplexing 
Generator (SMG) is described in Section II. The statistical analysis of the 
proposed SMG is given in Section III. Finally, some future works and 
conclusions are presented. 

II. The Shrinking-Multiplexing Generator 
In this section we give a brief review of the architecture and 

mathematical background of the new Shrinking-Multiplexing Generator (SMG) 
proposed by us in [8]. 

We generalized the architecture of the Shrinking generator [1] by using 
a p-adic control FCSR R (Fig. 1) instead of the control LFSR R,. Thise increases 
a number of used slave LFSRs from 1 in Shrinking generator to p - l in SMG. 
The control register LFSR i? ; is used to select a portion of the output sequences 
of a used LFSRs R, +R ,. 

I p-i 

Definition 1: A Shrinking-Multiplexing Generator (SMG) (Fig. 1) 
consists of a control FCSR of length L and of p-l slaved LFSRs of length Ljt 

L2, Lp_r each capable to produce one bit in its output; and a clock which 
controls the movement of data in registers. The algorithm of SMG with control 
p-adic FCSR consists of the following steps: 

1. All LFSRs from RAoR .,, and FCSR R are clocked. 
2. If the p-adic output b. = / of control register R is not equal to 0, the 

output bit of register R/ forms part of the keystream. 
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3. Otherwise, if the output b. = 0 of control register R is equal to 0, the 
output bits of all slave registers R: to R t discards. 

Fig 1. The Shrinking-Multiplexing Generator 

Therefore, the produced keystream is a shrunken version of the output 
sequences of LFSRs Rt to R when there is zero output of control FCSR, and 
a mixed version of the output sequences of LFSRs R{ to R when output is not 
equal to zero. 

The proposed SMG uses the generalization of 2-adic FCSRs [3] with 
stage contents and feedback coefficients in Z/(p) where p is a prime number, 
not necessarily 2. 

Definition 2: A p-adic feedback with carry shift register (FCSR) with 
Galois architecture of length L (Fig. 3) consists of L stages (or delay elements) 
numbered 0, 1, L-l, each capable to store one p-adic ( 0 , 1 , p - 1 ) number 
and having one input and one output; and a clock which controls the movement 
of data. During each clock cycle the following operations are performed: 

1. The content of stage 0 is output and forms part of the output sequence; 
2. The sum modulo p after stage / is passed to stage i -1 for each /, 

1 <i<L"l: 
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Fig. 2. Galois FCSR 

3. The output of the last stage 0 is introduced into each of the tapped 
cells simultaneously, where it is fully added (with carry) to the contents of the 
preceding stages. The qv q2, qL are the feedback multipliers and the cells 
denoted by cr c2, c r . , are the memory (or "carry") bits. If 

(1) q = -l + q l P + q2p2 +... + qLpL 

is the base p expansion of a positive integer: 
(2) q = -\ (mod/?), 
then q is a connection integer for a FCSR with feedback coefficients qv q2, 
qL in Z/(p). 

With each clock cycle, the integer sums: 

(3) c7J=aJ+a0qj+c. 

is accumulated. 

At the next clock cycle this sum modulo p 

(4) a'j_x = ° n (mod/)) 

is passed on to the next stage in the register, and the new memory values are: 

( 5 ) c'. =crn (d ivp) . 

The proposed SMG uses the LFSRs with stage contents and feedback coefficients in 
Extended Galois Field GF(p"). There are two architectures for LFSRs, the Galois and Fi
bonacci. We use the Galois one and next we give its definition [3]. 
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Definition 3: A linear feedback shift register (LFSR) with Galois 
architecture of length L (Fig. 2) consists of L stages (or delay elements) 
numbered 0,1, L-1, each capable to store one bit and having one input and 
one output; and a clock which controls the movement of data. During each 
clock cycle the following operations are performed: 

1. The content of stage 0 is output and forms part of the output sequence; 
2. The content of stage i is moved to stage i -1 for each i, 1 <i <L "1; 
3. The output of the last stage 0 is introduced into each of the tapped 

cells simultaneously, where it is added (modulo 2) to the contents of the 
preceding stages. If qr q2, ql are the feedback multipliers then the recurrence 
equations are as follows: 

(6) a'. = a . + 1 + q M a 0 , forO<i<L-2 

a ' L - \ =lLa0 

Fig. 3. Galois LFSR 

Suppose a Galois LFSR with connection polynomial q(X) 

has initial loading (a(), ar al/7). Then the output sequence b = (bff br ...) of 
the LFSR is the coefficient sequence of the function 
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where 

Conversely, if b is any strictly periodic sequence and let 

B(X) = q(x) be its generating function, then q{X) is a connection 

polynomial of a Galois LFSR which generates the sequence b, and h(X) 
determines the initial loading by (4). 

III. Statistical Properties of Shrinking-Multiplexing Generator 
Generators suitable for use in cryptographic applications need to meet 

stronger requirements than for other applications. In particular, their outputs 
must be unpredictable, i.e. random. To test the statistical properties of SMG 
we have used some procedures proposed by the National Institute of Standards 
and Technology (NIST) to be useful in detecting deviations of a binary sequence 
from randomness. These tests show as a first step whether or not a generator is 
suitable for a particular cryptographic application. 

The NIST statistical tests [5, 6] are formulated to test a specific null 
hypothesis (Hg): "The sequence being tested is random". Associated with this 
null hypothesis the alternative hypothesis (HJ is that the sequence is not 
random. For each applied test a decision is derived that accepts or rejects the 
null hypothesis, i.e., whether the generator is (or is not) producing random 
values, based on the sequence that was produced. 

For each test a statistical P-value is computed, which is a function of 
the data. For these NIST tests, each P-value [5] is the probability that a perfect 
random number generator would have produced a sequence less random than 
the sequence that was tested, given the kind of non-randomness assessed by 
the test. If a P-value for a test is determined to be equal to 1, then the sequence 
appears to have perfect randomness. A P-value of zero indicates that the 
sequence appears to be completely nonrandom. A significance level (a) can 
be chosen for the tests. If P-value xr, then the null hypothesis is accepted; i.e., 
the sequence appears to be random. If P-value < a, then the null hypothesis is 
rejected; i.e., the sequence appears to be non-random. The parameter a denotes 
the probability of the Type I error. Typically, a is chosen in the range [0.001, 
0.01]. In our test we chose a = 0.01. This indicates that one would 
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expect 1 sequence in 100 sequences to be rejected. A P-value>0.01 means 
that the sequence would be considered to be random with a confidence of 99 
%. A P-value < 0.01 means that the conclusion was that the sequence is non-
random with a confidence of 99 %. 

Two types of errors are supposed by statistical hypothesis testing (Table 
1. [5]). The conclusion, Type I error, occurs when the data is, in truth, random, 
and the test rejects the null hypothesis H0 (the data is random). The Type II 
error occurs if the data is, in truth, non-random, and a conclusion to accept the 
null hypothesis H is made. 

Table 1. Possible statistical test outcomes 

TRUE SITUATION CONCLUSION TRUE SITUATION 

Accept H0 Accept Ha (reject HJ 

Data is random (Hn is true) No error Type I error 

Data is not random (Ha is true) Type II error No error 

To determine the randomness of arbitrarily long binary sequences 
produced by SMG we used the NIST Test Suite statistical package. It consists 
of 16 functional tests. Some of them are decomposable into a variety of subtests. 
Here we describe briefly the purpose of the tests and the characteristics that 
they detect. More information about the mathematical background of the tests 
the reader may be found in [2, 5, 6]. The 16 tests are: 

1. The Frequency (Monobit) Test. The purpose of this test is to 
determine whether the number of ones and zeros in a sequence is approximately 
the same as would be expected for a truly random sequence. It detects too 
many zeroes or ones in the sequence. 

2. Frequency Test within a Block. The purpose of this test is to 
determine whether the frequency of ones in an Af-bit block is approximately 
M/2, as would be expected under an assumption of randomness. The test detects 
too many zeroes or ones at the beginning of the sequence. 
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3. The Runs Test. The purpose of the runs test is to determine whether 
the number of runs of ones and zeros of various lengths is as expected for a 
random sequence. A run of length k consists of exactly k identical bits and is 
bound before and after by a bit of the opposite value. In particular, this test 
determines whether the oscillation between such zeros and ones is too fast or 
too slow. 

4. Testfor the Longest-Run-of-Ones in a Block. It determines whether 
the length of the longest run of ones within the tested sequence is consistent 
with the length of the longest run of ones that would be expected in a random 
sequence. The small P-values indicate that the tested sequence has clusters of 
ones. 

5. The Binary Matrix Rank Test. Test checks for linear dependence 
among fixed length substrings of the original sequence. The small P-values 
indicate a deviation of the rank distribution from that corresponding to a random 
sequence. 

6. The Discrete Fourier Transform (Spectral) Test. The focus of this 
test is the peak heights in the Discrete Fourier Transform of the sequence. The 
test detects periodic features in the tested sequence. 

7. The Non-Overlapping Template Matching Test The purpose of this 
test is to detect generators that produce too many occurrences of a given non-
periodic (aperiodic) pattern. If the P-value is very small (< 0.01), then the 
sequence has irregular occurrences of the possible template patterns. The test 
consists of 148 subtests for different aperiodic patterns. 

8. The Overlapping Template Matching Test. Unlike the Non-
Overlapping Template Matching Test, the focus of this test is the number of 
occurrences of prespecified target strings. 

9. Maurer's "Universal Statistical" Test. The purpose of the test is to 
detect whether or not the sequence can be significantly compressed without 
loss of information. A significantly compressible sequence is considered to be 
non-random. 

10. The Lempel-Ziv Compression Test. The test determines how far 
the tested sequence can be compressed, using the number of cumulatively 
distinct patterns (words) in the sequence. The sequence is considered to be 
non-random if it can be significantly compressed. 

11. The Linear Complexity Test The purpose of this test is to determine 
whether or not the sequence can be produced by some LFSR. A LFSR that is 
too short implies non-randomness. 
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12. The Serial Test. The purpose of this test is to determine whether 
the number of occurrences of the 2"' /w-bit overlapping patterns is approximately 
the same as would be expected for a random sequence. Random sequences 
have uniformity; that is, every m-bit pattern has the same chance of appearing 
as every other m-bit pattern. 

13. The Approximate Entropy Test. This test compares the frequency 
of overlapping blocks of two consecutive/adjacent lengths (m and m+l) against 
the expected result for a random sequence. It detects non-uniform distribution 
of m-length words. 

14. The Cumulative Sums (Cusums) Test. It calculates the maximal 
excursion (from zero) of the random walk defined by the cumulative sum of 
adjusted (-1, +1) digits in the sequence. For a random sequence, the excursions 
of the random walk should be near zero. For certain types of non-random 
sequences, the excursions of this random walk from zero will be large. Test 
consists of two subtests. 

15. The Random Excursions Test. The focus of this test is the number 
of cycles having exactly ^visits in a cumulative sum random walk. The purpose 
of this test is to determine if the number of visits to a particular state within a 
cycle deviates from what one would expect for a random sequence. This test 
is actually a series of eight tests (and conclusions), one for each of the states: 
-4, -3, -2, -1 and +1, +2, +3, +4. 

16. The Random Excursions Variant Test. The test calculates total 
number of times that a particular state is visited in a cumulative sum random 
walk. It is actually a series of eighteen tests, one for each of the states: -9, -8, 
. . . , -1 and+1,+2, . . . ,+9 . 

We test the SMG with 3-adic control register FCSR and 2 slave LFSRs. 
We test 3 different SMGs with connection tabs given on Table 2. For each 
generator we make 100 different tests with sequence of 1 000 000 bits, which 
is generated with a variety of seeds (different initial states). In all, this resulted 
in 300.189 = 56 700 P-values. 

The results from all 56 700 tests are given on Table 3. On the table are 
given the average values for 100 P-values and 100 proportions for the 3 different 
SMG are tested. The number of tests is the same as those reviewed above. The 
letter "A" after the number of test indicates that the row gives the average 
value from all subtests included in this statistical test. The values of the 
cumulative-sums test (number 3.A) are the average from two subtests. The 
given values from the random-excursions test (number 12.A) are the average 
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from the eight subtests, the values from the random-excursions-variant test 
(number 13.A) are the average from the eighteen subtests, the values from 
nonperiodic-templates are the average (number 11.A) from 148 subtests, and 
the serial test (number 14.A) are the average from two subtests. 

Table 2. Connections for tested SMG 

№ SMG Connection 
Integer q 

Connection 
Polynomialsfor Rl and R2 

1. 3-adicFCSR, L = 16; 

LFSR Rr LI = 131; 
LFSR R,, L2=166. 

100 000 073 x n i + x 8 + x 3 + x 2; 
x 1 6 6 + X I 0 + x 3 + x 2 

2. 3-adic FCSR, L = 16; 

LFSR Rr LI = 776; 
LFSR R2, L2 = 200. 

100 000 037 X'76 + x7 + xs +x4+x3+x2+l; 
X200 + x5 + x3 + x2 + 1 

3. 3-adic FCSR, L = 14; 
LFSR Rr LI =34; 
LFSR R2,.L2 = 32. 

10 000 229 x34 + x7 + x6 + x5 + x2 + x+1; 
x32 + x7 + x1 + x3 + x2 + 1 

To determine how well the empirical results match their theoretical 
counterparts we assess the goodness of fit of the distribution of P-values to a 
uniform distribution. 

We build the histogram of P-values (fig. 4) among sub-intervals 
determined by dividing the unit interval by ten. To make a histogram all 567 
average P-values from all statistical tests are used. As one can see from Fig. 4, 
the P-values are distributed approximately uniformly in all ten subintervals. 
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Table 3. Results from statistical analysis of SMG 

JVb 
of 

Test 

Average from 
100 tests of 

1 s t SMG 

Average from 
100 tests of 

2 nd SMG 

Average from 
100 tests of 

3'th SMG 
Average 

JVb 
of 

Test 

P-value Propor-
tion 

P-value Propor
tion 

P-value Propor
tion 

P-value Propor
tion 

1. 
2. 
3.A 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
l l .A 
12.A 
13.A 
14.A 
15. 
16. 

0,935716 
0,236810 
0,357852 
0,935716 
0,834308 
0,085587 
0,779188 
0,304126 
0,964295 
0,759756 
0,480569 
0,389515 
0,276655 
0,679079 
0,657933 
0,262249 

1,00000 
1,00000 
0,98500 
0,99000 
0,98000 
1,00000 
0,99000 
1,00000 
0,96000 
0,99000 
0,99162 
0,97759 
0,99586 
1,00000 
0,99000 
0,97000 

0,026948 
0,437274 
0,505598 
0,249284 
0,867692 
0,249284 
0,032923 
0,955835 
0,162606 
0,514124 
0,503849 
0,419667 
0,502274 
0,513301 
0,075719 
0,834308 

1,000C 
0,990( 
0,990( 
0,980C 
0,990( 
0,990( 
1,000( 
0,980( 
1,000( 
0,990( 
0,989f 
0,9881 
0,9921 
1,000( 
1,000C 
0,970( 

0,554420 
0,129620 
0,586419 
0,162606 
0,699313 
0,055361 
0,935716 
0,816537 
0,236810 
0,042808 
0,526539 
0,552950 
0,469981 
0,726828 
0,401199 
0,935716 

0,9700 
1,0000 
0,9750 
0,9800 
0,9700 
1,0000 
1,0000 
0,9900 
0,9600 
0,9900 
0,9897 
0,9839 
0,9866 
0,9900 
0,9800 
1,0000 

0,505695 
0,267901 
0,48329C 
0,449202 
0,800438 
0,130077 
0,582609 
0,692166 
0,45457C 
0,438896 
0,503652 
0,454044 
0,416304 
0,639736 
0,378284 
0,677424 

0,990000 
0,996667 
0,983333 
0,983333 
0,980000 
0,996667 
0,996667 
0,990000 
0,973333 
0,990000 
0,990292 
0,983183 
0,991487 
0,996667 
0,990000 
0,980000 

Then, the Goodness-of-Fit Distributional Test is made on the P-
values obtained for an arbitrary statistical test using a distribution of %2. 
This is accomplished by computing: 

(10) 

where F. is the number of P-values in subinterval i and s is the sample size. 
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0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 

Unit Subintervals 

Fig. 4. Histogram of P-values 

Thenthe P-value of the P-values is computed: 

(9 z 2 

(11) P-value = Q y - y 

where g(«,x)is an Incomplete Gamma Function: 

where T(a) is a Gamma Function: 

QO 

(13) r(z)= p - V - y 
0 

Using the histogram of all 567 P-values in Fig. 4 and equations (10) -
(13) P-value = Q(4.5, 11.19) = 0.0055 are found. Because P-value > 0.0001 
[5], the sequence generated by SMG can be considered uniformly distributed. 
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where p = 1 - a, and m is the sample size. If the proportion falls outside this 
interval, then there is evidence that the data is nonrandom. Note that with m = 
300 the confidence interval is 0.9728 4-1.0. These bounds are given in Fig. 5 
as dashed lines. As one can see from the figure, none of the proportions falls 
outside these thresholds. 

p 
r 
o 
P 
o 
r 
t 

o 
n 

1 

0,995 

0,99 \ 

0,985 

0,98 

0,975 

0,97 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Number of Statistical Test 

Fig. 5. Proportion of sequences passing a statistical test 

The analysis of the empirical results from all 16 NIST statistical test 
shows: 

1. The sequences generated by SMG are uniform. This means that the 
probability of occurrence of a zero or one is equal, i.e. exactly 1/2. The expected 
number of zeros (or ones) is n/2, where n = the sequence length. This property 
is proved by follow tests and results: 

1.1. The number of ones and zeros in a sequence and in sub-blocks are 

127 

To determine the proportion of sequences passing a statistical test we 
compute the proportion of sequences that had P-values > 0.01. The range of 
acceptable proportions is determined using the confidence interval defined 
as: 



approximately the same as in the truly random sequence is shown by 1 s t and 
2 n d NIST statistical tests. The average numbers for all 300 tested sequences are 
shown on Table 4. 

Table 4. Number of Zeroes and Ones in SMG sequences 

SMG Number Average from 100 x 1 000 000 sequences SMG Number 
Number of Zeroes Number of Ones 

SMG1 499952 500048 
SMG 2 500017 499983 
SMG 3 500089 499911 

Average from 
all GSM 

500019 499981 

1.2. The number of runs of ones and zeros of various lengths is as 
expected for a random sequence which is proved by 3 r d test. 

1.3. The results from 4 t h and 5 t h tests demonstrate that the generated 
sequences have not clusters of ones and there is not linear dependence among 
fixed length substrings of the original sequence. 

1.4. The serial test (number 12) shows that every m-bit pattern has the 
same chance of appearing as every other m-bit pattern. 

1.5. The excursions of the random walk is near zero which is given by 
test 14. 

2. The sequences generated by SMG are scalable, i.e. any extracted 
subsequence of sequence generated by SMG pass any test for randomness. 
This property is demonstrated by follow tests and results: 

2 .1 . The approximate entropy test did not detect non-uniform 
distribution of /w-length words. 

2.2. The generated sequences have not irregular occurrences of the 
possible aperiodic template patterns which is shown by tests 7 and 8. 

2.3. The number of visits to a particular state within a cycle did not 
deviate from the number expected for a random sequence. 
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3. The sequences generated by SMG are uncompressible. This property 
is argued by follow tests and results which is by tests 15 and 16. 

3.1. The sequence cannot be significantly compressed without loss of 
information which is shown by universal statistical test (number 9). 

3.2. The sequence cannot be significantly compressed with Lempel-
Zip algorithm (test 10). 

4. The sequences generated by SMG have a large period. This property 
is shown by follow results: 

4.1. The spectral tests (number 9) did not detect periodic features in 
the tested sequence. 

4.2. The linear complexity test (number 11) proved that the generated 
sequences cannot be produced by some too short LFSRs with length up to 16. 

IV. Future works and conclusions 
The empirical results from the above mentioned NIST statistical tests 

gives us reason to say that the binary sequences generated by SMG 
pseudorandom number generator have properties like uniformity, scalability, 
large period, incompressibility and consistency, i.e. the behavior of a SMG is 
consistent across seeds. These properties show that the ShrinMng-Multiplexing 
Generator works unpredictably like a true random number generator. 

The proposed SMG is characterized with fast software implementation. 
It can be used in cryptographic applications in modern aerospace and 
communication information systems where high speed and low delay are 
requirements. 

The proposed idea of using a p-adic control FCSR in PRNG allows 
generalizing all well-known clock controlled generators like p-adic Combiner 
Generator [7], Summation-Shrinking Generator [9], Alternating-Shrinking 
Generator and so on. 
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НЯКОИ СТАТИСТИЧЕСКИ СВОЙСТВА НА 
СВИВАЩИЯ-МУЛТИПЛЕКСИРАЩ ГЕНЕРАТОР 

Ж. Ташева 

Резюме 

Двоичните поточни шифри са едни от криптографските 
приложения, които често се използват в космическите и комуникационни 
системи, където се изискват високи скорости и малки закъснения. 

Необходимостта от високоскоростни софтуерни поточни шифри 
през последните години доведе до предлагането на няколко нови 
алтернативни решения. В статията накратко е представена архитектурата 
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и принципа на работа на нов псевдослучаен генератор (PRNG), наречен 
Свиващ-Мултиплексиращ Генератор (8Shrinking-Multiplex-Generator -
SМG). Той е изграден от р -1 паралелни линейни преместващи регистри 
с обратни връзки (LFSRs) с голям период и един преместващ регистър с 

пренос и обратни връзки (РС8К), който управлява нелинейността в 
работата на SМG. 

За да бъде приложим в криптографските системи, всеки РRNG 
трябва да има големи период и линейна комплексност, както и добри 
статистически свойства. В статията са представени резултатите от 
направения статистически анализ на 300 различни последователности с 
дължина 1 000 000 бита, генерирани при различни ключове на SМG 
генератора. За анализа е използван предложения от Националния институт 
за стандарти и технологии комплект от 16 различни функционални 
статистически тестове. Анализът потвърждава, че генерираните от SМG 
последователности са еднообразни, независещи от използваното ядро на 
генератора, с голям период и не могат да се компресират. Всички тези 
свойства се отнасят и за всички подредици на генерираната 
последователност. Тези резултати ни дават основание да твърдим, че 
генерираната от SМG последователност е непредсказуема и се 
характеризира със свойствата на истински случаен генератор. 
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