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Abstract

The binary additive stream ciphers are one of the cryplographic systems that are
often used in aerospace and communication appiications where high speed and low delay
are requirements.

The need for software-oviented stream ciphers has lead to several alternative
propasals in the last few vears. A new Pseudo Random Number Generator (PRNG) named
Shrinking—Multiplexing Generator (SMG) is described in this paper. it uses p-1 parallel
working Linear Feedback Shifi Registers (LFSRs) with large period and one p-adic Feedback
with Carry Shifi Registers (FCSR), which control nonlinearity in the generator.

To be suitable for use in cryptographic systems, PRNG must have large period,
large linear complexiny and good statistical properties. The results from statistical analysis
of SMG are given in the paper. The sequence generated by SMG is uniform, scalable,
uncompressible, with large period; consistent and unpredictable are shown by analysis of
proposed PRNG. This gives us reason to say that the SMG is suitable for particular
cryplegraphic application.

I. Introduction

‘The binary additive stream ciphers are one of the cryptographic systems
that are often used in applications where high speed and low delay are

requirements like modern aerospace and communication information systems.
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In the binary additive stream cheaper, the keystream, the plaintext, and the
ciphertext are sequences of binary digits. The keystream is generated by a
keystream generator, which takes a secret key as a seed, and produces a long
pseudorandom sequence. The ciphertext is generated by bitwisec modulo 2
additions of the keystream and the plaintext.

The goal of stream cipher design is to efficiently produce pseudorandom
sequences that in all senses are “indistinguishable” from truly random
sequences, To do this, the pseudorandom sequence must have various
properties, such as high linear span, high pair-wise Hamming distance, low
cross-correlation value, large linear complexity and good statistical properties.

The need for software-oriented stream ciphers has lead to several
alternative proposals in the last few years. To satisfy this need we propose a
new Pseudo Random Number Generator (PRNG) and give its statistical
analysis.

The paper is organized as follows. A new Shrinking—Multiplexing
Generator (SMG) is described in Section II. The statistical analysis of the
proposed SMG is given in Section III. Finally, some future works and
conclusions are prescnted.

IL The Shrinking—Maultiplexing Generator

In this section we give a brief review of the architecture and
mathematical background of the new Shrinking—Multiplexing Generator (SMG)
proposed by us in [8].

We generalized the architecture of the Shrinking generator [1] by using
ap—adic control FCSR R (Fig. 1) instead of the control LFSR R,. Thise increases
a number of used slave LFSRs from [ in Shrinking generator to p—1 in SMG.
The control register LFSR R, is used to select a portion of the output sequences
of aused LFSRs R, -~ RF_,.

Definition 1: A Shrinking—Multiplexing Generator (SMG) (Fig. 1)
consists of a control FCSR of length I and of p—/ slaved LFSRs of length L,
L, .., L, each capable to produce one bit in its output; and a clock which
controls the movement of data in registers. The algorithm of SMG with control
p-adic FCSR consists of the following steps:

1. Al LFSRs from R, to R ., and FCSR R are clocked.

2. If the p-adic output b, = j of control register R is not equal to 0, the
output bit of register ® forms part of the keystream.
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3. Otherwise, if the output & = 0 of control register R is equal to 0, the
output bits of all slave registers R, to Rp_ , discards.

iy
» LFSR R, >
: i :
U, pj
> » LFSRR,, >
clack
. b b= j=0
sip-adic FCSR | 2y _youtput ai;, j=1..p-1
R
bf': O - .
—»discard «;, j=1...p-1

Fig 1. The Shrinking—Multiplexing Generator

Therefore, the produced keystream is a shrunken version of the output
sequences of LFSRs R, to R , when there is zero output of control FCSR, and
a mixed version of the output sequences of LFSRs R, to R, , when output is not
equal to zero.

The proposed SMG uses the generalization of 2-adic FCSRs [3] with
stage contents and feedback coefficients in Z/(p) where p is a prime number,
not necessarily 2.

Definition 2: A p-adic feedback with carry shift register (FCSR) with
Galois architecture of length L (Fig, 3) consists of L stages (or delay elements)
numbered 0, {, ..., L-1, each capable to store one p-adic (0, 1, ..., p-1) number
and having one input and one output; and a clock which controls the movement
of data. During each clock cycle the following operations are performed:

1. The content of stage 0 is output and forms part of the output sequence;,

2. The sum modulo p after stage i is passed to stage i - / for each i,
I <i<L'I;
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Fig. 2. Galois FCSR

3. The output of the last stage 0 s introduced into each of the tapped
cells simultaneously, where it is fully added (with carry) to the contents of the
preceding stages. The ¢, g, ..., g, are the feedback multipliers and the cells
denoted by ¢, ¢, ..., ¢, ., are the memory (or “carry”) bits. If

(1)  g=-l+q,p+q,p°+...+q, p"
is the base p expansion of a positive integer:
(2) g=-1 (mod p),

then g is a connection integer for a FCSR with feedback coefficients g, g, ...,
g, m Z/(p).

With each clock cycle, the integer sums:
(3) O, =440 +cJ,
1s accumnulated.

At the next clock cycle this sum modulo p
4) a'j._l =0, (mod p)

is passed on to the next stage in the register, and the new memory values are:

5) ¢ =0, divp),
The proposed SMG uses the LFSRs with stage contents and feedback coefficients in

Extended Galois Field GF(p"). There are two architectures for LFSRs, the Galois and Fi-
bonacci. We use the Galois one and next we give its definition [3].

118



Definition 3: A linear feedback shift register (LFSR) with Galois
architecture of length L (Fig. 2) consists of L stages (or delay elements)
numbered 0, /, ..., L- 1, each capable to store one bit and having one input and
one output; and a clock which controls the movement of data. During each
clock cycle the following operations are performed:

1. The content of stage 0 ts output and forms part of the cuput sequence;

2. The content of stage i is moved to stage i - / foreach i, /] <i <L”I;

3. The output of the [ast stage 0 is introduced into each of the tapped
cells simultaneously, where it is added (modulo 2) to the contents of the
preceding stages. If g, g, ..., g, are the feedback multipliers then the recurrence
equations are as follows:

r_
(6) a,=4a.. +q;+lao, Jor0<i<L-2

!

4, 1799,
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Fig. 3. Galois LFSR

ay > M dn

Suppose a Galois LFSR with connection polynomial ¢(X)
L :
n gX)=-1+2g;X'
i=1
has initial loading (a, a, ..., a,.,). Then the output sequence b= (b, b, ...) of

the LFSR is the coefficient sequence of the function

| BlX)=-
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where
9 hx)=a,+aX+ . t+a X

Conversely, if b is any strictly periodic sequence and let

MX) . : .
( )=—m be its generating function, then ¢(X) is a connection

polynomial of a Galois LFSR which generates the sequence b, and A(X)
determines the initial loading by (4).

II1. Statistical Properties of Shrinking—Multiplexing Generator

Generators suitable for use in cryptographic applications need to meet
stronger requirements than for other applications. In particular, their outputs
must be unpredictable, 1.e. random. To test the statistical properties of SMG
we have used some procedures proposed by the National Institute of Standards
and Technology (¥IST) to be useful in detecting deviations of a binary sequence
from randomness. These tests show as a first step whether or not a generator is
suitable for a particular cryptographic application.

The NIST statistical tests [5, 6] are formulated to test a specific null
hypothesis (#,): “The sequence being tested is random”. Associated with this
null hypothesis the alternative hypothesis (X)) is that the sequence is not
random. For each applied test a decision is derived that accepts or rejects the
null hypothesis, i.e., whether the generator is (or is not) producing random
values, based on the sequence that was produced.

For each test a statistical P-value is computed, which is a function of
the data. For these NIST tests, each P-value [5] is the probability that a perfect

random number generator would have produced a sequence less random than
the sequence that was tested, given the kind of non-randomness assessed by

the test. If a P-vaiue for a test is determined to be equal to 1, then the sequence
appears to have perfect randomness. A P-value of zero indicates that the
sequence appears to be completely nonrandom. A significance level (@) can
be chosen for the tests. If P-value >z, then the null hypothesis is accepted; i.e.,
the sequence appears to be random. If P-value < , then the null hypothesis is
rejected; L.e., the sequence appears to be non-random. The parameter o denotes
the probability of the Type I error. Typically, a is chosen in the range [0.001,
0.01]. In our test we chose o = (.01. This indicates that one would
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expect 1 sequence in 100 sequences to be rejected. A P-value > (.01 means
that the sequence would be considered to be random with a confidence of 99
%. A P-value < 0.0] means that the conclusion was that the sequence is non-
random with a confidence of 99 %.

Two types of errors are supposed by statistical hypothesis testing (Table
1. [51). The conclusion, Type I error, occurs when the data is, in truth, random,
and the test rejects the null hypothesis H, (the data is random). The Type II
error oceurs if the data 1s, in truth, non-random, and a conclusion to accept the
null hypothesis H, is made.

Table 1. Possible statistical rest outcomes

TRUE SITUATION CONCLUSION

Accept H, Accept Ha (reject H)

Data is random (/7 is true) No error Type [ error

Data is not random (/7 is true) Type Il error No error

To determine the randomness of arbitrarily long binary sequences
produced by SMG we used the NIST Test Suite statistical package. It consists
of 16 functional tests. Some of them are decomposable into a variety of subtests.
Here we describe briefly the purpose of the tests and the characteristics that
they detect. More information about the mathematical background of the tests
the reader may be found in [2, 5, 6]. The 16 tests are:

\. The Frequency (Monobit) Test. The purpose of this test is to
determine whether the number of ones and zeros in a sequence is approximately
the same as would be expecled for a truly random sequence. It detects too
many zeroes or ones in the scquence.

2. Frequency Test within a Block. The purpose of this test is to
determine whether the frequency of ones in an M-bit block is approximately
M72, as would be expected under an assumptton of randomness. The test detects
too many zeroes or ones at the beginning of the sequence.
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3. The Runs Test. The purpose of the runs test is to determine whether
the number of runs of ones and zeros of various lengths i1s as expected for a
random sequence. A run of length k consists of exactly k identical bits and is
bound before and after by a bit of the opposite value. In particular, this test
determines whether the oscillation between such zeros and ones is too fast or
too slow.

4, Test for the Longest-Run-of-Ones in a Block. It determines whether
the length of the longest run of ones within the tested sequence is consistent
with the length of the longest run of ones that would be expected in a random
sequence. The small P-values indicate that the tested sequence has clusters of
ones.

5. The Binary Matrix Rank Test. Test checks for linear dependence
among fixed length substrings of the original sequence. The small P-values
indicate a deviation of the rank distribution from that corresponding to a random
sequence.

6. The Discrete Fourier Transform (Spectral) Test, The focus of this
test is the peak heights in the Discrete Fourier Transform of the sequence. The
iest detects periodic features in the tested sequence.

7. The Non-Overlapping Template Matching Test. The purpose of this
test is to detect generators that produce too many occurrences of a given non-
periodic (aperiodic) pattern. If the P-value is very small (< 0.01), then the
sequence has irregular occurrences of the possible template patterns. The test
consists of 148 subtests for different aperiodic patterns.

8. The Overlapping Template Matching Test. Unlike the Non-
Overlapping Template Matching Test, the focus of this test is the number of
occurrences of prespecified target strings.

9. Maurer’s “Universal Statistical” Test. The purpose of the test is to
detect whether or not the sequence can be significantly compressed without
loss of information. A significantly compressible sequence is considered to be
non-random.

10. The Lempel-Ziv Compression Test. The test determines how far
the tested sequence can be compressed, using the number of cumulatively
distinct patterns (words) in the sequence. The sequence is considered to be
non-random 1f it can be significantly compressed.

11, The Linear Complexity Test, The purpose of this test is to determine
whether or not the sequence can be produced by some LFSR. A LFSR that is
too short implies non-randomness.
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12. The Serial Test. The purpose of this test is to determine whether
the number of occutrences of the 27 m-bit overlapping patterns is approximately
the same as would be expected for a random sequence. Random sequences
have uniformity; that is, every m-bit pattern has the same chance of appearing
as every other m-bit pattern.

13. The Approximate Entropy Test. This test compares the frequency
of overlapping blocks of two consecutive/adjacent lengths (m and m+1) against
the expected result for a random sequence, It detects non-uniform distribution
of m-length words.

14. The Cumulative Sums (Cusums) Test. 1t calculates the maximal
excursion (from zero) of the random walk defined by the cumulative sum of
adjusted (-1, +1) digits in the sequence. For a random sequence, the excursions
of the random walk should be near zero. For certain types of non-random
sequences, the excursions of this random walk from zero will be large. Test
consists of two subtests.

15. The Random Excursions Test. The focus of this test is the number
of cycles having exactly K visits in a cumulative sum random walk. The purpose
of this test is to determine if the number of visits to a particular state within a
cycle deviates from what one would expect for a random sequence. This test
is actually a series of eight tests (and conclusions), one for each of the states:
-4,-3,-2,-1 and +1,+2, +3, +4,

16. The Random Excursions Variant Test. The test calculates total
number of times that a particular state is visited in a cumulative sum random
walk. It is actually a series of eighteen tests, one for each of the states: -9, -8,
ces-Land +1,+2, ..., 9.

We test the SMG with 3-adic control register CSR and 2 slave LFSRs.
We test 3 different SMGs with connection tabs gtven on Table 2. For each
generator we make 100 different tests with sequence of 1 000 000 bits, which
is generated with a variety of seeds (different initial states). In all, this resulted
in 300.189 = 56 700 P-values.

The results from all 56 700 tests are given on Table 3. On the table are
given the average values for 100 P-values and 100 proportions for the 3 different
SMG are tested. The number of tests is the same as those reviewed above. The
letter “A” after the number of test indicates that the row gives the average
value from all subtests included in this statistical test. The values of the
cumulative-sums test (number 3.A) are the average from two subtests. The
given values from the random-excursions test (number 12.A) are the average
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from the eight subtests, the values from the random-excursions-variant test
{number 13.A) are the average from the eighteen subtests, the values from
nonperiodic-templates are the average (number 11.A) from 148 subtests, and
the serial test {(number 14.A) are the average from two subtests,

Table 2. Connections for fested SMG

N SMG Connection Connection
Integer g Polynomialsfor RI and R2
1| 3-adic FCSR, L = 16; 160 000 073 PALE S CELD S B e
xl66 + XIO 1 )(3 + XZ
LESR R, LI=131;
LFSR R, L2=166.
2.} 3-adic FCSR, L = i6; 100 000 037 X7+ x7 4 x¥F +xtrxiexi+];
X+t +xf v xt
LESRR, LI =176;
LFSR R, L2= 200.
3.1 3-adic FCSR, L = i4; 13000 229 ¥ rxT+xf 7 + b xtl;
LFSRR, LI = 34; e+t xi 4]
LFSRR, L2 =32

To determine how well the empirical results match their theoretical
counterparts we assess the goodness of fit of the distribution of P-values to a
uniform distribution.

We build the histogram of P-values (fig. 4) among sub-intervals
determined by dividing the unit interval by ten. To make a histogram all 567
average P-values from all statistical tests are used. As one can see from Fig. 4,
the P-values are distributed approximately uniformly in all ten subintervals.
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Table 3. Resuits from statistical analysis of SMG

Ne Average from Average from Average from
of 190 tests of 100 tests of 100 tests of Average
Test 1¢ SMG 2= SMG 3" SMG

P-value Propor- [P-value [Propor-| P-value |Propor-|P-value [Propor-

tion tion tion tion

1. [0,935716 | 1,00000] ©,026948( 1,0000 0,554420{ 0,9700[ 0,50569% 0,990000
2. 10,236810 | 1,00000p 0,437274f 0,990Q 0,12962() 1,0000| 0,267901) 0,996667
3.A J0,357852) 0,98500 0505598 0,990(] 0,5864194 0,9750] 0,483294 0,983333
4, 10,935716 1 §,99000 0,2492841 0,9800 (,16260K 0,9800} 0,449202 0,983333
5. 10,834308] 0,980000 0,867692 0,950Q 0,699313] 0,9700] 6,800434 0,980000
6. |0,085587 1 1,00000] 0,246284] 0,9904 0,055361| 1,0000] 0,130077 0,996667
7. 107791881 0,99000t 0,032923 1,0004 0,835714 1,0000] 0,58260% 0,996667
8. 10,304126] 1,00000{ 0,5558335 0,9804 0,816537] 40,9900} 0,692164 0,9950000
9. {0,964295| 0,96000| 0,162606 1,000Q 0236810 0,9600( 0,45457( 0,973333
10. ]0,7597561 0,990000 0,514124; 0,990Q 0,042808 0,9900] 0,438894 0,950000
11.A|0.480569 | 0,99162] 0,503849 0,989 0,526539 0,9897| 6,503652 0,990292
12.A10,389515 | 0,97759] 0,419667 00,9881 0,55295() 0,9839( 0,454044 0,983183
13.A10,2766551 0,99586] 0,502274] 0,992 0,469981] 0,9866] 0,416304 0,991487
14.A10,679079 | 1,000001 0,513361 1,000G 0,726828 0,9900] 0,639734 8,996667
15, [0,657933 [ 0,99000 0,075719 1.0004 ©,401199] 0.9800] 6,378284 0,990000
16, ]0,262249} 0,97000 0,834308] 0,970( 0,935714 1,0000] 0,677424 0,980000

(10}

Then, the Goodness-0f-Fit Distributional Test is made on the P-
values obtained for an arbitrary statistical test using a distribution of %2
This is accomplished by computing:

PRl A

i=]

where F is the number of P-values in subinterval i and 5 is the sample size.
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Fig. 4. Histogram of P-values

Thenthe P-value of the P-values is computed:

9 2,2
(1) Pevalye = Q{E’TJ’
where O{a, x}is an Incomplete Gamma Function:

o e e

X

where I'(a) is a Gamma Function:

(]3) I_‘(Z)—_- J}Z-leh‘!df )
0

Using the histogram of all 567 P-values in Fig. 4 and equations {10) -
(13) P—value = Of4.5, 11.19) = 0.0055 are found. Because P-value » 0.0001
[5], the sequence generated by SMG can be considered uniformly distributed.
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To determine the proportion of sequences passing a statistical test we
compute the proportion of sequences that had P-values > 0.01. The range of
acceptable proportions is determined using the confidence interval defined
as:

- 1 _ ~
3 |PUT P

(14 pE3 ==,
n

where p=1-«, and m is the sample size. If the proportion falls outside this
interval, then there is evidence that the data is nonrandom. Note that with m =
300 the confidence interval is 0.9728 + 1.0. These bounds are given in Fig. 5
as dashed lines. As one can see from the figure, none of the proportions falls
outside these thresholds.

P 1 e - - -

T * *« * *
0,995 A e —

o L

p 089 > >4 *

D N

, 0985 e e

t 098 -

i o

o 09751+ - -

n 0.97 --i._l— --‘—'-I -'.'- - elivenl . - - Bernlwal d

1t 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Statistical Test

Fig. 5. Proportion of sequences passing a statistical test

The analysis of the empirical results from all 16 NIST statistical test
shows:

1. The sequences generated by SMG are uniform. This means that the
probability of occurrence of a zero or one is equal, i.e. exactly 1/2. The expected
number of zeros (or ones) is 7/2, where n = the sequence length. This property
1s proved by follow tests and results;

1.1. The number of ones and zeros in a sequence and in sub-blocks are
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approximately the same as in the truly random sequence is shown by 1% and
2% NIST statistical tests. The average numbers for all 300 tested sequences are
shown on Table 4.

Table 4. Number of Zeroes and Ones in SMG sequences

SMG Number Average from 180 x 1 000 000 sequences
Number of Zeroes Number of Ones

SMG I 499952 500048

SMG 2 500017 495983

SMG 3 500089 499911

Average from 500019 499981

all GSM

[.2. The number of runs of ones and zeros of various lengths is as
expected for a random sequence which is proved by 3% test.

1.3. The results from 4% and 5% tests demonstrate that the generated
sequences have not clusters of ones and there is not linear dependence among
fixed length substrings of the original sequence.

1.4. The serial test (number 12} shows that every m-bit pattern has the
same chance of appearing as every other m-bit pattern.

1.5. The excursions of the random walk is near zero which is given by
test 14.

2. The sequences generated by SMG are scalable, i.c. any extracted
subsequence of sequence generated by SMG pass any test for randomness.
This property is demonstrated by follow tests and results:

2.1. The approximate entropy test did not detect non-uniform
distribution of m-length words.

2.2. The generated sequences have not irregular occurrences of the
possible aperiodic template patterns which is shown by tests 7 and 8.

2.3. The number of visits to a particular state within a cycle did not
deviate from the number expected for a random sequence.
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3. The sequences generated by SMG are uncompressible. This property
is argued by follow tests and results which is by tests 15 and 16.

3.1. The sequence cannot be significantly compressed without loss of
information which is shown by universal statistical test (number 9).

3.2. The sequence cannot be significantly compressed with Lempel-
Zip algorithm (test 10).

4. The sequences generated by SMG have a large period. This property
1s shown by follow results:

4.1. The spectral tests (number 9) did not detect periodic features in
the tested sequence.

4.2. The linear complexity test (number 11) proved that the generated
sequences cannot be produced by some too short LFSRs with length up to 16.

1V. Future works and conclusions

The empirical results from the above mentioned NIST statistical tests
gives us reason to say that the binary sequences generated by SMG
pseudorandom number generator have properties like uniformity, scalability,
large period, incompressibility and consistency, i.c. the behavior of a SMG is
consistent across seeds. These properties show that the Shrinking—Multiplexing
Generator works unpredictably like a true random number generator.

The proposed SMG is characterized with fast software implementation.
It can be used in cryptographic applications in modern aerospace and
communication information systems where high speed and low delay are
requirements.

The proposed idea of using a p-adic control FCSR in PRNG allows
generalizing all well-known clock controlled generators like p-adic Combiner
Generator [7], Summation-Shrinking Generator [9], Alternating-Shrinking
Generator and so on.
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HSKOU CTATUCTHYECKH CBOUCTBA HA
CBUBANIUSA-MYJITHIIAEKCUPANL TEHEPATOP

A, Tawesa

Pe3ome

JlBoMusMTe MOTOYHH MHGPU ca eJHH OT KPHITOFpadCKuTe
IPUIOKCHUS, KOHTO JECTO €€ H3NOM3BAT B KOCMHMYECKHUTE H KOMYHHKAIMOHHY
CHCTEMH, KBAETO ¢€ H3UCKBAT BUCOKH CKOPOCTH M MaJIKH 33KBCHEHHS.

HeobxonuMoeTTa OT BHCOKOCKOPOCTHHY COMTYEPHH MOTOYHK MIHM{pH
Npe3 MOCHeNHUTE TOMAHHH J0BEAE N0 NMPEAIaraHeTo HAa HAKONKO HOBH
anTepHATHBHY peilicHus. B cTarnsra HakpaTko e NpefcTaBeHa apXUTEKTypaTa
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H IIPUHIIATA Ha paboTa Ha HOB HCeBROCHyYaeH redeparop (PRNG), Hapeyen
Caupam-Myntunnexcupary eneparop (Shrinking~-Multiplexing Generator -
SMG). Toit e u3rpaged oT p - | napanennyu nMuBeHHN MpeMeCcTBalId PETHCTPY
¢ 00parkH Bpb3KH (LFSRS) ¢ roRsM Mepuoi ¥ e1H IPEMeCTBall PerucThp ¢
npedoc u odpatHu Bpb3xku (FCSR), x0lMTO ynpaBnsgBa HeluHelHOCTTa B
pabotara Ha SMG.

3a na Obse NPHIOKKM B xpunrorpadckure cucremu, Bcekd PRNG
TpOBa A2 UMaA FOJEMH TePHOA M JIMHeHHa KOMIUIGKCHOCT, KaKTo ¥ A0SpH
CTATHCTHYECKH CBOHCTBA. B cTaTHATa ¢a IPEACTaBEHU PE3YATATUTE OT
HalpaBeHUs CTATHCTHYECKY aHanu3 Ha 300 pa3nyuHy DOCHeZOBATENHOCTH €
aemxuHa 1 000 000 Oura, resepupans npu pasnuvHY Kiarouose Ha SMG
TeHeparopa. 3a aHanu3a € H3N0oN3BaH OPSAROKCHKS 0T HalHOHANHMS HHCTHTYT
3a CTaHAapTH U TEXHOJOTMH KOMILICKT 0T 16 pazauvyHy (yHKIMOHATHH
CTaTRCTUUECKH TECTORE. AHANU3BT HOTBEPIKAABE, Ye reHepHpanmnre oT SMG
DOCHENOBATENHOCTY €& €AHO0OPa3HY, He3aBH 1M OF U3ION3BAHOTO AAPO HA
resepaTopa, ¢ FOJIIM IIEPHOL ¥ HE MOTAT Jla C& KOMIIpecupar. BeHuke Te3H
CBOHCTBA CE& OTHACHST H 34 BCHYKH NCApCAHIH Ha IeHepHpaHaTta
[IOCNEeIOBATENHOCT. €31 Pe3yRTary HU AB8BAT OCHOBAHUE /13 TBBPANM, 4e
reiepupanara oT SMG DOCNCOOBATENHOCT € HEmpeAcKasyeMa H ce
XapaKTEPH3UPa ChC CBOWCTBATA HA HCTHHCKHU CIIyHAeH FEHEpaTop.
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